A CONVERGENT SYNTHESIS OF 4-(2-BENZOTHIAZOYL)PIPERIDINES WITH ANTIHISTAMINIC ACTIVITY

George D. Maynard*, Hsien C. Cheng, John M. Kane, Michael A. Staeger Marion Merrell Dow Research Institute, 2110 E. Galbraith Road, Cincinnati, Ohio 45215-6300

(Received in USA 6 January 1993)

Abstract: The synthesis of 4-(N-methoxy-N-methylcarboxamido)-1-piperidinecarboxylic acid 1,1-dimethylethyl ester (5) is described Reaction of this intermediate with 2-lithiobenzothiazole followed by deprotection and N-alkylation yields a series of 4-(2-benzothiazoyl)piperidines with potent antihistaminic activity.

4-Aroylpiperidines and their corresponding alcohol reduction products possess a number of interesting biological activities including antagonism of H₁, D₂, and 5-HT₂ receptors.¹ In many instances, these compounds can be efficiently synthesized by Friedel-Crafts acylation using isonipecotoyl chloride hydrochloride. This approach fails, however, when applied to the acylation of basic, nitrogen-containing heterocycles, e.g. pyridines, and electron deficient aromatics. In addition, when successful, varying mixtures of regioisomers are often observed. In order to gain access to this class of compounds, we have recently developed a carbanion-mediated process for attaching the aromatic moiety to isonipecotic acid derivatives.² Thus, lithiation of 1 and subsequent acylation with appropriately N-substituted derivatives of ester 2 afforded the desired benzimidazoylpiperidines 3 in 34 to 38% yield (Scheme I). While this approach was successful in these

Scheme I

F
$$R = CH_2CH_2$$
 OCH_3 , 38% $R = CO_2C(CH_3)_3$, 34% $R = CO_2C(CH_3)_3$, 34% $R = CO_2C(CH_3)_3$, 34%

instances, the reaction of 2 with other carbanions was often dominated by the formation of bis-addition products. For example, the reaction of 2 ($R=4-CH_3OC_6H_4CH_2CH_2$) and 2-lithiobenzothiophene resulted in the formation of the corresponding tertiary carbinol in 43% yield. As a solution to this problem, we now report the synthesis of 4-(N-methoxy-N-methylcarboxamido)-1-piperidinecarboxylic acid 1,1-dimethylethyl ester³ (5) and its use in the synthesis of a series of 4-(2-benzothiazoyl)piperidines with antihistaminic activity.

As outlined in Scheme II, amide⁴ 5 was conveniently prepared from N-t-Boc-isonipecotic acid 4 by treatment with 1,1-carbonyldiimidazole⁵ in dichloromethane at room temperature for 2 h followed by addition of N,O-dimethylhydroxylamine hydrochloride Compound 5, initially isolated as a viscous oil after bulb-to-bulb distillation, crystallized on standing to give a colorless solid (mp 63-64 °C).

Scheme II

Treatment of 5 with one equivalent of 2-lithiobenzothiazole in THF at -78° for 2.5 h followed by warming to ambient temperature cleanly produced 4-(2-benzothiazoyl)piperidine 6 in 63-93% yield depending on the exact experimental procedure and purification technique used. Cleavage of the *t*-Boc protecting group using trifluoroacetic acid at 0 °C afforded the trifluoroacetate salt 7 in 81% yield after precipitation with cold ether and recrystallization from ethanol. N-alkylation of 7 with various alkyl halides using the conditions listed in Table I gave the 1-alkyl-4-(2-benzothiazoyl)piperidines 8-15 in 34-92% yield (Scheme III)

Scheme III

As reported in Table I, compounds 8-15 all act to antagonize the histamine induced contractile response of Guinea pig ileum. Compound 8, possessing the 4-methoxyphenethyl N-substituent, displays the greatest activity with a pA₂ value of 9 3 (8.77-10.49, 95% confidence interval). At a concentration of 10⁻⁷ M, compound 8 had no effect on acetylcholine induced contraction or against calcium chloride induced contraction in K⁺ (40 mM)

depolarized tissue. With the exception of compound 15, each of the 1-alkyl-4-(2-benzothiazoyl)piperidines listed in Table I had an LD_{50} of >400 mg/kg in mice.

Product RX**Alkylation Conditions** % Yield pA_2 8 4-MeOC₆H₄CH₂CH₂Br K₂CO₃, DMF, 59 9.3 90°C 8.4 9 4-FC₆H₄CH₂CH₂Br NaOH, (Et₃NCH₂Ph)+Br-74 CH2Cl2/H2O, A 7.8 10 C6H5CH2CH2Br K₂CO₃, (Et₃NCH₂Ph)⁺Br⁻ 34 CH2Cl2/H2O, A 74 8.3 11 4-MeOC₆H₄OCH₂CH₂CH₂Cl NaHCO3, NaI THF/ H_2O , Δ 76 8.6 12 4-MeO₂CC₆H₄OCH₂CH₂CH₂I NaHCO₃, THF/H2O, A 13 4-MeCONHC₆H₄OCH₂CH₂CH₂Cl NaHCO₃, NaI 8.1 60 THF/ H_2O , Δ 14** ~7 MeO₂CCH₂Br 77 NaHCO₃ THF/ H_2O , Δ 15 $3-MeOC_6H_4CH_2Br$ K_2CO_3 92 7.3

Table I

THF/ H_2O , Δ

The 4-(2-benzothiazoyl)piperidines are structurally interesting in that they lack the bis-aryl motif common to most previously reported classes of antihistamines.⁸ In order to more closely approximate this structural feature, we reacted 4-benzothiazoylpiperidine 8 with phenyllithium affording tertiary carbinol 16 in 80% yield (Scheme IV). Other modifications of the 4-position carbonyl included sodium borohydride reduction giving secondary carbinol 17 in 45% yield and Wittig olefination providing 18 in 15% yield.

Interestingly, the phenyllithium addition product 16, which is more structurally similar to classical antihistamines such as terfenadine⁹ than is ketone 8 suffered a substantial decrease in antihistaminic potency. The secondary carbinol 17, which maintains a heteroatom proximate to the 4-position but changes the geometry at that position, also gave a significant loss of activity. Olefin 18, which mimics the sp² geometry of the 4-position carbonyl but eliminates the possibility of a heteroatom-mediated interaction with the receptor at that position, also displayed diminished antihistaminic activity

^{*}The method of Van Rossum⁶ was used to determine pA₂ values for all compounds. The pA₂ value for compound 8 was refined by Schild plot⁷ analysis The antihistaminic activity was determined on the histamine H₁ receptor. ** Isolated as the HCl salt.

Scheme IV

a PhLi, THF, -78 °C (16, 80%), b NaBH₄, CH₄OH, 0 °C (17, 45%), c Ph₃P=CH₄, THF, -10 °C (18, 15%)

In conclusion, we have developed an efficient carbanion-mediated synthesis of 4-aroylpiperidines from 5 and applied this methodology to the preparation of a novel class of antihistamines Recently, the utility of intermediate 5 was also demonstrated in the preparation of piperidine-based 5-HT₂ antagonists ¹⁰ Our continuing research with 4-(2-benzothiazoyl)piperidine antihistamines and related classes of molecules will be the subject of future reports

Acknowledgment: We thank Angela Hsu for her technical assistance in performing biological evaluation and the members of the Analytical and Structural Chemistry Department at Marion Merrell Dow for determination of spectral and analytical data

References and Notes

- 1 Leysen, J.E., Gommeren, W Drug Development Res. 1986, 8, 119
- 2. Kane, J M; Carr, A A; Hay, D A, Staeger, M A. J. Org. Chem. 1990, 55, 1399
- All new compounds displayed spectra consistent with assigned structure and analytical data (C, H, N)
 variation ≤0 4% of theoretical
- (a) Weinreb, S. M; Nahm, S Tetrahedron Lett 1981, 22, 3815 (b) Ward, J. S, Merritt, L. J. Heterocyclic Chem. 1990, 27, 1709 (c) Bhattacharya, A, Williams, J. M; Amato, J. S; Dolling, U.-H., Grabowski, E. J. J. Synth. Commun., 1990, 30, 2683 (d) Reetz, M. T; Drewes, M. W; Lennick, K., Schmitz, A, Holdgrun, X Tetrahedron: Asymmetry 1990, 1, 375 (e) Heathcock, C. H, Theisen, P. D. J. Org. Chem. 1988, 53, 2374
- 5 Einhorn, J., Einhorn, C., Luche, J.-L. Synth. Commun. 1990, 20, 1105
- 6 Van Rossum, J. M. Arch. Int. Pharmacodyn. Ther. 1963, 143, 299.
- 7 Schild, H. O., Arunlaskshana, O. Br. J. Pharmacol. Chemother. 1959, 14, 48.
- Witiak, D. T., Cavestri, R. C. In *Burgers Medicinal Chemistry*, Wolff, M. E., Ed. 4th ed.; John Wiley and Sons. New York, 1981, Vol. 1, p. 553.
- 9 Carr, A. A., Meyer, D. R. Arzneimittel-Forschung, 1982, 32, (II)9a, 1157
- 10. Carr, A A; Kane, J M.; Hay, D A, Schmidt, C J U.S Patent 5 134 149, July 28, 1992.